Home »

Advanced vector extensions

The meaning of «advanced vector extensions»

Advanced Vector Extensions (AVX, also known as Sandy Bridge New Extensions) are extensions to the x86 instruction set architecture for microprocessors from Intel and AMD proposed by Intel in March 2008 and first supported by Intel with the Sandy Bridge[1] processor shipping in Q1 2011 and later on by AMD with the Bulldozer[2] processor shipping in Q3 2011. AVX provides new features, new instructions and a new coding scheme.

AVX2 (also known as Haswell New Instructions) expands most integer commands to 256 bits and introduces fused multiply-accumulate (FMA) operations. They were first supported by Intel with the Haswell processor, which shipped in 2013.

AVX-512 expands AVX to 512-bit support using a new EVEX prefix encoding proposed by Intel in July 2013 and first supported by Intel with the Knights Landing processor, which shipped in 2016.[3][4]

AVX uses sixteen YMM registers to perform a Single Instruction on Multiple pieces of Data (see SIMD). Each YMM register can hold and do simultaneous operations (math) on:

The width of the SIMD registers is increased from 128 bits to 256 bits, and renamed from XMM0–XMM7 to YMM0–YMM7 (in x86-64 mode, from XMM0–XMM15 to YMM0–YMM15). The legacy SSE instructions can be still utilized via the VEX prefix to operate on the lower 128 bits of the YMM registers.

AVX introduces a three-operand SIMD instruction format, where the destination register is distinct from the two source operands. For example, an SSE instruction using the conventional two-operand form a = a + b can now use a non-destructive three-operand form c = a + b, preserving both source operands. AVX's three-operand format is limited to the instructions with SIMD operands (YMM), and does not include instructions with general purpose registers (e.g. EAX). Such support will first appear in AVX2.[5]

The alignment requirement of SIMD memory operands is relaxed.[6]

The new VEX coding scheme introduces a new set of code prefixes that extends the opcode space, allows instructions to have more than two operands, and allows SIMD vector registers to be longer than 128 bits. The VEX prefix can also be used on the legacy SSE instructions giving them a three-operand form, and making them interact more efficiently with AVX instructions without the need for VZEROUPPER and VZEROALL.

The AVX instructions support both 128-bit and 256-bit SIMD. The 128-bit versions can be useful to improve old code without needing to widen the vectorization, and avoid the penalty of going from SSE to AVX, they are also faster on some early AMD implementations of AVX. This mode is sometimes known as AVX-128.[7]

These AVX instructions are in addition to the ones that are 256-bit extensions of the legacy 128-bit SSE instructions; most are usable on both 128-bit and 256-bit operands.

Not all CPUs from the listed families support AVX. Generally, CPUs with the commercial denomination "Core i3/i5/i7/i9" support them, whereas "Pentium" and "Celeron" CPUs don't.

Related Searches

© 2015-2020, Wikiwordbook.info
Copying information without reference to the source is prohibited!
contact us mobile version